Metrizability of Cone Metric Spaces Via Renorming the Banach Spaces

نویسندگان

  • M. Asadi
  • S. M. Vaezpour
  • B. E. Rhoades
  • H. Soleimani
چکیده

In this paper we show that by renorming an ordered Banach space, every cone P can be converted to a normal cone with constant K = 1 and consequently due to this approach every cone metric space is really a metric one and every theorem in metric space is valid for cone metric space automatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph

In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...

متن کامل

Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the  assumption of normality we establish common fixed point theorems for the generalized quasi-contractions  with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$  in the set...

متن کامل

Cone normed spaces

In this paper, we introduce the cone normed spaces and cone bounded linear mappings. Among other things, we prove the Baire category theorem and the Banach--Steinhaus theorem in cone normed spaces.

متن کامل

Topology and Metrizability of Cone Metric Spaces

Abstract: Replacing the set of real numbers by an ordered Banach space in the definition of a metric, Guang and Xian [5] introduced the concept of a cone metric and obtained some fixed point Theorems for contractive mappings on cone metric spaces. It has been shown that every cone metric space is metrizable [2-4]. In this paper we review and simplify some results of [6] and as a consequence of ...

متن کامل

On some open problems in cone metric space over Banach algebra

In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012